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The osmotic equation of state for the athermal bond fluctuation model on the simple cubic lattice is obtained
from extensive Monte Carlo simulations. For short macromolecules (chain length N=20) we study the influ-
ence of various choices for the chain stiffness on the equation of state. Three techniques are applied and
compared in order to critically assess their efficiency and accuracy: the “repulsive wall” method, the thermo-
dynamic integration method (which rests on the feasibility of simulations in the grand canonical ensemble),
and the recently advocated sedimentation equilibrium method, which records the density profile in an external
(e.g., gravitationlike) field and infers, via a local density approximation, the equation of state from the hydro-
static equilibrium condition. We confirm the conclusion that the latter technique is far more efficient than the
repulsive wall method, but we find that the thermodynamic integration method is similarly efficient as the
sedimentation equilibrium method. For very stiff chains the onset of nematic order enforces the formation of an
isotropic-nematic interface in the sedimentation equilibrium method leading to strong rounding effects and
deviations from the true equation of state in the transition regime.
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I. INTRODUCTION

Understanding the equation of state of macromolecules in
solution has been a longstanding problem of polymer sci-
ence, which is both important as a fundamental problem in
the statistical mechanics of soft matter [ 1-7] and relevant for
various applications of polymers. The interplay of excluded
volume effects [2—4,6], solvent quality, and variable chain
stiffness [4,8] already is very difficult to describe for macro-
molecules in very dilute solution [9], withstanding an ana-
lytic solution and making the application of computer simu-
lation methods [5,10] necessary. The experimental situation
on measurements of the equation of state of polymer solu-
tions is addressed in chapter 5 of Ref. [3] and chapter 3 of
Ref. [11]. Considering semidilute and concentrated solutions,
the enthalpic and/or entropic interactions among the polymer
chains create nontrivial correlations in the structure of the
solutions involving many chains, and phase transitions such
as phase separation under bad solvent conditions into a dilute
polymer solution and a concentrated one may occur
[1,2,12-14]. Alternatively, under good solvent conditions one
may observe for semiflexible or for stiff chains a transition
from an isotropic to a nematic solution when the polymer
concentration increases [15-19]. Of particular interest is the
situation when nematic ordering and the tendency to phase
separation under bad solvent conditions compete [20]. Pre-
liminary computer simulation studies of a corresponding
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model [21,22] gave only rather rough information on the
phase behavior, and it was concluded that the accuracy with
which the osmotic equation of state could be determined
needs to be improved.

Thus, there are many reasons why establishing methods
that allow the reliable estimation of the equation of state for
various coarse-grained lattice models for polymers is of in-
terest. While in an off-lattice model the estimation of the
pressure tensor from the virial theorem in principle is
straightforward [23], it often is not possible to study very
large systems with the desirable accuracy [5], and hence
simulations of lattice models still have their place [5,10].
However, for lattice models different techniques to calculate
the osmotic pressure of polymers in solution must be sought
in order to derive their equation of state. The standard
method, particularly valuable for dilute solutions and/or not
too large chain lengths, calculates the chemical potential
from the insertion probability of a test chain [24,25] and the
osmotic pressure then follows from standard thermodynamic
integration [5,23,26,27]. As is well known, insertion of a
polymer chain into a volume containing already other chains
is very difficult due to very small acceptance probabilities,
and hence requires advanced Monte Carlo methods
[26,28,29] to be practically feasible.

As an alternative method Dickman [30,31] proposed the
repulsive wall thermodynamic integration (RWTI) method,
which remains applicable also for very dense systems since it
works in the canonic (MVT) ensemble, where the number of
chains A in the box remains fixed. However, this method
requires substantial simulation effort, since for each state
point in the bulk several simulation runs with increasing
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wall-monomer repulsion and subsequent thermodynamic in-
tegration need to be performed. Moreover, the RWTI method
may suffer from important finite size effects [32].

More recently, it was proposed [33] to extract the osmotic
equation of state from Monte Carlo simulations where the
equilibrium monomer and center-of-mass concentration pro-
files of lattice polymers in a gravitationlike potential are
computed. From these concentration profiles, the equation of
state can be inferred if a local density approximation like in
hydrostatic equilibrium is invoked. This method has been
broadly applied to study the sedimentation equilibrium of
colloidal dispersions containing spherical [34], rodlike [35],
or disklike [36] particles. More recently, successful applica-
tions to colloid-polymer mixtures [37] and solutions of block
copolymers [38] or binary polymer solutions [39] have been
made as well.

Despite these successes, this “sedimentation equilibrium”
(SE) method also may have drawbacks, when other large
length scales appear in the system, that compete with the
characteristic “sedimentation length.” This length scales
inversely with the “gravitational constant” characterizing the
gravitationlike potential and hence can be made arbitrarily
large [33], but the linear dimension of the simulated system
in the z direction in which this gravitationlike force acts must
then be huge, also. A well-known case, where even the real
gravitation potential on earth substantially disturbs the equa-
tion of state is a fluid very close to the gas-liquid critical
point [40], since there the correlation length of density fluc-
tuations diverges, and critical fluctuations undisturbed by
gravity can occur in the x,y directions perpendicular to the
gravitational force only [40]. Other cases, apart from critical
points of second-order transitions, where large length scales
arise that are potentially disturbed by the gravitationlike po-
tential, are associated with the formation of thick wetting
layers at walls, for instance.

While Addison et al. [33] did test the SE method against
the RWTI method for a few cases varying the solvent quality
from good solvents to theta solvents, finding good agree-
ment, they considered only fully flexible chains. Thus, we
take up this problem but rather consider semiflexible chains
as well: the possible occurrence of nematically ordered wet-
ting layers at the wall where the density is largest [41] or
even the occurrence of the isotropic to nematic transition in
the bulk solution of the semiflexible or stiff polymers may
complicate matters. The aim of the present work is to care-
fully test the SE method against both the RWTI method and
the standard thermodynamic integration method in the grand
canonical uVT ensemble (TIuVT method, u denoting the
chemical potential), and to assess by detailed comparisons
both the efficiency and the accuracy of these methods. As has
been explained above, there is need for accurate simulation
methods for the computation of the equation of state of poly-
mer solutions in the context of various interesting problems.

The plan for the remainder of this paper is as follows. In
Sec. II we briefly review the theoretical basis for the RWTI,
TIuVT, and SE methods, while Sec. III describes the simu-
lated model and mentions the types of Monte Carlo moves
used. Section IV presents comparisons of the three methods
for fully flexible chains over a wide range of densities, while
Sec. V presents our results for variable chain stiffness. Sec-
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tion VI contains our conclusions and gives an outlook to
future work.

II. METHODS TO CALCULATE THE OSMOTIC
PRESSURE FOR LATTICE MODELS OF POLYMER
SOLUTIONS

A. Thermodynamic integration in the grand canonical
ensemble (TIuVT method)

We consider a system of chains of length N in a simula-
tion box of volume V with periodic boundary conditions
(typically the box has a cubic shape V=L3, L being the linear
dimension) at given temperature T and chemical potential wu
of the chains. The density of polymer chains in the system,
p=N1V, with N the average number of chains contained in
the simulation box then is an output of the simulation.

Utilizing the standard relations in the canonical ensemble,
w=[d(FIV)/dplyy and p=—(9F/ V)7, where F is the free
energy of the system and p the pressure, one easily derives
that

P
p=pu—f u(p")dp' + const, (1)
0

where the integration constant in Eq. (1) can be fixed by
reference to the low density limit, where the system behaves
like an ideal gas of chains,

pV=NkgT, m=plkgT=p. (2)

Denoting then the chemical potential of the ideal gas of
chains as w4, and defining u®*=pu— u;y the excess chemical
potential per chain, Egs. (1) and (2) imply [24]

P
7T=P(1+,U«ex)—f u(p")dp’. (3)
0

In practice the integral in Eq. (3) is discretized, so that the
reduced osmotic pressure 7; at chain density p; is obtained
from the recursion relation

&

m= am + (1 + )= (1 + ) pimy = (g™ + i)
X (pi = pi-1)/2. (4)

The disadvantages of the method are clearly obvious from
Eq. (4): a large number of state points {w;, T, V} needs to be
studied with small differences between wu; and u;_; and
hence p; and p,_;, so that the discretization error going from
Eq. (3) to Eq. (4) is negligible; and an efficient grand canoni-
cal simulation method is needed, so p; is sampled with suf-
ficient accuracy. For not too long chains and not too high
densities, however, the method is indeed practically useful,
and since periodic boundary conditions are used, the system
for large V always is homogeneous, and the analysis is not
hampered by any interfacial effects, which are present inevi-
tably in the other techniques described below due to their
explicit use of walls.

B. Repulsive wall thermodynamic integration (RWTI) method

This method can be implemented both in the grand ca-
nonical wVT ensemble and in the canonical NVT ensemble.
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While the latter choice has the advantage that no chain in-
sertions are necessary and hence the method also works for
long chains and at high densities, it suffers from rather large
finite size effects [32]. We have used here both the canonical
and the grand canonical version of the method.

One considers now a box of linear dimensions L X L X H,
with periodic boundary conditions in x and y directions only,
while a hard wall is placed both at z=0 and z=H. Moreover,
one introduces a repulsive potential of strength &y, which
acts in the first layer adjacent to z=0 and in the last layer
available to the monomers, z=H. As discussed in [30-32],
the osmotic pressure is then obtained from the fraction of
sites ¢.(N) occupied by monomers in the layers adjacent to
both walls z=0 and z=H,

— fl @( ¢z:0()\) + ¢Z:H()\)

= , A= — eyalksT).
0 A 2 ) exp(— eyai/kpT)

©)

Again the integration in Eq. (5) is discretized, and 20
different values of N turned out to be sufficient to obtain
reliable results.

C. Sedimentation equilibrium (SE) method

This method utilizes the canonical ensemble NVT, and
one also considers a box of linear dimensions L X L X H with
periodic boundary conditions in x and y directions only,
while again hard walls are used in the z direction at z=0 and
at z=H. An external potential is applied not at the walls but
everywhere in the system [33]

kgT
Uextemal(z) =—mgi=— %)\SZ. (6)

Here m is the mass of a monomer, g is the acceleration
due to the gravitylike potential, a is the lattice spacing, and
A, is a dimensionless constant that characterizes the strength
of this gravitational potential, N,=amg/kgT. It is also useful
to introduce characteristic gravitational lengths &,,, &,

gm = a/}\g’ gcm = gm/N' (7)
As shown by Addison et al. [33], for large z the
density profile of an ideal gas of monomers at the lattice
would follow the standard barometric  formula
pu(z) cexp(-mgz/kgT)=exp(—z/§,,), while for an ideal gas
of polymer chains the density profile of monomer units
pm(Z) =NP(Z) o GXP(—Z/fc-m)~

While the variation of the density profile for large z,
where the system is very dilute and the ideal gas behavior
holds, hence is trivially known, and this knowledge is an
important consistency check of the method, for smaller z the
density profile is nontrivial. But from this profile the osmotic
equation of state can be estimated, when one invokes the
local density approximation, such that the equation of hydro-
static equilibrium holds [33,34]
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dp(z)
dz

=—Nmgp(z), (8)

p(z) being the local osmotic pressure at altitude z. Integration
of Eq. (8) yields

m(z) = p(2)/kgT = SZ,IJ p(z')dz'. 9)

Thus one can record both p(z) [and the associated mono-
mer profile p,,(z)] and 7r(z) simultaneously, and eliminating z
from these relations one obtains the desired equation of state
7(p) [or 7(p,,), respectively].

Noting that in the local density approximation we expect
that the density distribution of the monomer units satisfies
pm(2)=Np(z), we find from Egs. (7) and (9) that mw(z) can
also be written as

W(Z) = gy_nlf pm(zr)dzl . (10)

However, the validity of the local density approximation
needs to be considered carefully. For example, near the hard
wall at z=0, p,,(z) may exhibit strong oscillations (“layer-
ing”), and also p(z) exhibits a nontrivial structure. Thus it is
clear that the local density approximation breaks down near
the hard wall at z=0, and in fact one should use Egs. (9) and
(10) only for z=R,, the gyration radius of the chains. Simi-
larly, rapid density variations invalidating the local density
approximation are also expected near an interface between
coexisting phases (as it may occur for bad solvent condi-
tions, for instance). In addition, one must require that on the
scale of Az=R, the change of the potential, Eq. (6), is neg-
ligibly small. This implies

|AUextemal(AZ)/kBT| = )\gRg/a = Rglgm <. (11)

For flexible chains, R, scales like \N in concentrated solu-
tions, while for stiff chains we have R,xN. This implies that
for stiff chains considerably larger values of &, (and hence
smaller values of )\g) need to be chosen than for flexible
ones. Of course, since one must accommodate in the simu-
lation box the full density profile from a value appropriate
for concentrated solutions near z=0 down to the dilute re-
gime near z=H, a linear dimension H>§,, is mandatory;
otherwise, the distortion of the density profile due to this
upper boundary at z=H leads to systematic errors as well.
Thus, the SE method requires a careful choice of simulation
parameters to avoid such errors and ensure the desired very
good accuracy, and the large size H in the z direction to some
extent will reduce the advantage, that the whole equation of
state can be estimated from a single run.

Finally, we note that the approach can be generalized to
other forms of the external potential Ueyemal(z), different
from a gravitationlike potential. For example, if one uses

: kT,
Uextemal(z) == %)\gZ > (12)

where « is an exponent different from one, the equation for
the force balance at height z [Eq. (8)] gets modified as
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d[;(;) = - (\Ja)rp(2)z", (13)
and hence
m(z) =(£,)" f K7 p,(2)dZ. (14)

Motivation for using different potentials can be experi-
ments made in a centrifuge. The centrifugal force depends
linearly on the distance from the center of rotation, so that
k=2 for this case. Although it is not clear at this point which
choice for the exponent « is optimal, testing that the equation
of state (p,,) thus obtained does not depend on « is a nice
consistency check.

III. MODEL AND SIMULATION TECHNIQUE

We use the bond fluctuation model [42] on the simple
cubic lattice, taking henceforth a=1 as our unit of length.
Each effective monomeric unit is represented by an elemen-
tary cube of the lattice, blocking all eight sites at the corners
of this cube from further occupation, realizing thus the ex-
cluded volume interaction between the monomers. The bond
vectors can be taken from the set {(+¥2,0,0),(x2,=+1,0),
(£2,%1,£1),(£2,£2,%1),(£3,0,0),(x3,%1,0)}, including
also all permutations between these coordinates; altogether
108 different bond vectors occur, which leads to 87 different
angles between successive bonds. To model the chain stiff-
ness, an intramolecular potential depending on the angle
between two successive bond vectors along the chain is in-
troduced (bending energy), and also an energy term depend-
ing on the bond length b can be included [17],

Ubending: U19+ Ub:—fCOS ”(9(1 + c coS 19) + SO(b —b())z.
(15)

Both the stiffness parameter f and g, are measured in units of
kgT. Note that for the model with f=2.68, g,=4, by=0.86,
¢=0.03 the isotropic to nematic transition has been studied
by extensive Monte Carlo simulations previously [17], and in
order to be able to compare the present results to previous
work we have included this bond length energy term here
again.

Note that variable solvent quality can be modeled by in-
cluding also a square well (SW) potential between any pair
of monomers,

-
—&, 1=16

U r)= — 16
N T (16)

as done in Refs. [13,21]. However, the present work will
treat the case e=0 only; our analysis of the phase behavior
when both f and e are nonzero is deferred to a later work.
For the runs in the NVT ensemble (for the RWTI and SE
methods) we define two Monte Carlo steps (MCS) to involve
one attempt to perform a local “random hopping” move per
each monomer unit in the system [42] and one attempt of a
slithering-snake move per chain. These are the standard
moves for simulations using the bond fluctuation model
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[5,43] in the canonical ensemble. The chain length used was
N=20 throughout, while typical box sizes were 90X 90
X 90 and 60X 60X 180 for the RWTI method and 80X 80
X 250 for the SE method, respectively. For the SE method, a
typical system contained A'=1000 chains, and about 10’
MCS were needed to get a reasonably well equilibrated den-
sity profile. For the RWTI method, the number of chains in
the box was varied from very small number up to about N
=3000. Again typically 107 MCS per run were used, taking
10* “measurements” in each run, with 103 MCS between two
successive measurements (it was checked that these 10* con-
figurations then were uncorrelated).

For the runs in the uVT ensemble, one Monte Carlo step
means one configurational bias move [13,21,26,28] plus ad-
ditionally either one attempt to perform a local random hop-
ping move of every effective monomer in the system or one
attempt of a slithering-snake move per chain. For the TIuVT
method, about 50-60 different values of the chemical poten-
tial were used, and the box size was 90 X 90 X 90. For each
parameter combination 3 X 10> MCS were taken. The maxi-
mum value of the number of chains reached was about N
=2700 (this corresponds to the polymer volume fraction of
about ¢=0.6 in this simulation box). So the total number of
MCS needed to record the equation of state is of the order of
2 %X 107 MCS (but note that 1 MCS needs an amount of CPU
time, which depends on the number of chains N in the
system).

Since it is well known [5,27] that in the A'VT ensemble
the equilibration of long wavelength density fluctuations is
very slow, suffering from “hydrodynamic slowing down”
[27], it is useful to take special precautions that the density
profiles in the RWTT are well equilibrated, in order to avoid
uncontrolled errors. Therefore for each value of the repulsive
wall parameter \ [cf. Eq. (5)] we first equilibrated the system
in the uVT ensemble, choosing w appropriately to reach the
desired value of N. Again 3 X 103 steps were used for this
grand canonical equilibration stage. Then the configurational
bias moves were stopped, and the N'VT run with the mea-
surement of the number of monomers N,,,;(\) adjacent to the
walls began.

In the configurational bias moves, one needs to utilize a
biased chain insertion method to let a polymer “grow” suc-
cessively into the system. At each step all possible 108 bond
vectors from the current effective monomer are examined,
and a position for inserting the next monomeric unit along
the chain is chosen, respecting the excluded volume condi-
tion, and using the Boltzmann weight calculated from the
intramolecular energy, Eq. (15). The statistical weight of the
generated polymer configuration hence is easily calculated
recursively, and thus the bias can be accounted for in the
acceptance probability for the move.

In our simulations, we have recorded standard single-
chain characteristics such as the mean-square end-to-end dis-
tance R, and the mean-square gyration radius R, of the
chains (7; are positions of monomers, 7, is the position of
the center of mass),

N 1/2
R.=((Fy—7)D", Ry=\ X Fi=7.)'N ) , (17)
i=1

from the runs in the uVT ensemble. Note that these quanti-
ties depend on the polymer volume fraction ¢=8/NNa?/V in
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FIG. 1. Osmotic pressure 7 plotted vs polymer volume fraction
¢ for the athermal fully flexible bond fluctuation model on the
simple cubic lattice. The solid line shows the TIu VT results, while
the two large squares indicate results obtained with the RWTI
method. Filled circles are the corresponding RWTI results of Deut-
sch and Dickman (Ref. [31]).

the system, or the average density of monomer units p,,
=¢/8a>. The average (...) extends over all chains and all
generated system configurations. In the SE method, where
we have a density profile from a rather large density near z
=0 to almost zero at z=H, we expect that the radii R,.R, will
depend distinctly on the height z.,, of the center of mass of
a chain, and hence this information could only be obtained
with substantially reduced statistical accuracy. In the RWTI
method, one can estimate the radii as well if one restricts the
averaging to chains with center-of-mass coordinate 7, suf-
ficiently remote from the walls.

IV. RESULTS FOR FULLY FLEXIBLE CHAINS

We start by comparing results obtained from the RWTI
method with results obtained from the thermodynamic inte-
gration in the grand canonical ensemble (Fig. 1). The agree-
ment between the results of both methods actually is excel-
lent (relative deviations are smaller than 1072, and the
statistical error for all data points obtained by both methods
was also always less than 1%). Also the old data by Deutsch
and Dickman [31], which clearly are considerably less accu-
rate, agree with the present calculation to within a few
percent.

An essential consideration for the TIuVT method is that
the values of u for which calculations are performed must be
so closely spaced that the probability distributions P ,(p,,) at
neighboring choices of u overlap strongly. This condition
has been carefully checked. Note, however, that the effort in
CPU resources to generate the full equation of state m(¢) in
Fig. 1 with the TIuVT method is comparable to the effort for
a single point on the equation of state in the RWTI method.
Therefore we restrained our efforts to the accurate calcula-
tion of two state points with this method only.

Figure 2 now compares the results obtained with the SE
method with those of the TIuVT method, and again we find
perfect agreement. Note that the choice A,=0.01 implies a
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FIG. 2. Difference between osmotic pressure 7 obtained with
the TIuVT and SE methods plotted vs ¢. Note that the difference is
less than 1073 throughout and almost no systematic trend can be
seen (see also discussion in Sec. V below). The SE data were ob-
tained for a system of size 80X80X200 containing N'=1600
chains, for a choice of )\g=0.01.

length &,=100 [Eq. (7)], while the gyration radius is R,
~6.4 for N=20 and volume fractions in the range from 0.1
< ¢$<0.2, which are relevant here. Thus the condition R,
<&, [Eq. (11)] is safely fulfilled, but nevertheless it is im-
portant to check that no visible systematic error of the SE
method is present (to our knowledge, it is not known in
which order of R,/§,, systematic corrections due to the gra-
dient in density should be expected). As expected, we see
some increase of the random statistical error with increasing
¢, but the absolute magnitude of this error always stays
clearly below 1073, and the relative error is between 1% and
2%.

Thus we confirm the conclusion of Addison et al. [33], for
a different model than studied in their work, that the SE
method can yield a reliable estimation of the equation of
state. However, care has to be exerted that parameters such
as the height H of the simulation box and the strength of the
external potential A, are chosen appropriately, and also the
statistical effort needs to be large enough. Figures 3 and 4
contain examples of the problems that one encounters when
these conditions are not met. For example, when the poten-
tial is chosen too weak for the chosen size H (and the num-
ber of chains ), so that the density profile (we plot here and
below profiles of the polymer volume fraction ¢) is slightly
affected by the hard wall at z=H [see Fig. 3(b)], a systematic
depression of 7(¢) in the ideal gas region (where simply
m=p=p,,/N=¢/8Na®> must hold) is found [see Fig. 3(a)].
Conversely, when the statistics do not suffice, or the equili-
bration time was too short so that the asymptotic behavior of
the density profile [see Eq. (18) below] has not been reached,
one can also get an overestimation of the pressure in this
region. Interestingly, even such data that are invalid in the
ideal gas region still merge rather well at larger volume frac-
tions, indicating the robustness of the SE method in this re-
gime. It is also remarkable that the strong layering found for
the potential proportional to z'”> near the wall for \!=0.5
(and the subsequent rather rapid decrease of the density to-
wards zero) do not create any problems, however. Figure 4,
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FIG. 3. (a) Osmotic pressure 7 (on a logarithmic scale) plotted
vs volume fraction ¢ (on a logarithmic scale), for the fully athermal
solution of flexible chains of length N=20, comparing several vari-
ants of the SE method for a box of size 80X 80X 250 and N
=1200. Open squares refer to the gravitationlike potential, Eq. (6),
with A,=0.01, while the filled circles and stars refer to the potential
in Eq. (12) with xk=1/2, using A;:O.l and 0.5, correspondingly.
The full line is the exactly known ideal gas limit. (b) Density (vol-
ume fraction) profiles of monomer units, ¢(z)=2n,,(z)/ Ny, corre-
sponding to the results shown in (a); the solid line is for the gravi-
tationlike potential with )\g=0.01, the dashed-dotted line is for }\é
=0.5, k=1/2, and the dotted line is for )\5',=0.1, k=1/2; here n,,(z)
is the average number of monomer units at the altitude z, n,
=L?/4 is the maximal number of monomers in one layer, and the
coefficient 2 in the formulas for ¢(z) above accounts for the fact
that one fully occupied layer excludes for occupation all lattice sites
in a neighboring layer. Note that the density profile for the case
)\é',=0.1 is affected by the wall at z=250 (the inset shows the same
figure using a logarithmic scale for the density), leading to system-
atic errors in the equation of state. The decay of density profiles
always occurs on scales much larger than the average value of
gyration radius V(Té), which was about 6.4 for the dilute region and
about 5.6 in the concentrated region close to the wall.

on the other hand, shows a case [x=2 in the potential Eq.
(12), N;=0.001] for which the resulting density profile [Fig.
4(b)] is too steeply varying, and then it is very likely that the
local density approximation is no longer accurate. Conse-
quently, it is no surprise that the osmotic pressure comes out
systematically too large [Fig. 4(a)]. However, the choice k
=2, )\;,:0.0001 is again in very good agreement with the
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FIG. 4. (a) Same as Fig. 3(a), but comparing the results for the
gravitationlike potential, Eq. (6), with \,=0.01 (filled circles) to
results for the potential in Eq. (12) with x=2, using \!=0.0001
(open squares) and )\é=0.001 (stars). (b) Density (volume fraction)
profiles of monomer units corresponding to the results shown in
Fig. 4(a); the solid line is for the gravitationlike potential with A,
=0.01, the dashed-dotted line is for Aé:0.00l, k=2, and the dotted
line is for )\;=0.0001, Kk=2.

result obtained for the potential Eq. (6) with A,=0.01 (which
also agrees with the TIuVT results, as noted above). The
finding that the three potentials, which lead to very different
density profiles, nevertheless yield the same result for the
equation of state 7(¢) is very clear evidence that the local
density approximation is valid for the chosen set of
parameters.

Figure 5 presents then a comparison of the monomer den-
sity profiles for the cases where the SE method yields correct
results. We use here a logarithmic scale to demonstrate that
for low densities the barometric height formula

Pm(Z) o< CXP[— Uexternal(z)/kBT] (18)

is fulfilled. One can see that the density profiles in Fig. 5 are
compatible with Eq. (18) over several decades in density.
Only for extremely small densities the statistical scatter be-
comes significant. Thus, analyzing the data for p,,(z) in this
way provides a check whether sufficient statistical effort has
been invested.
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FIG. 5. Semilogarithmic plot of the density profiles of monomer
units for three choices of the external potential: Eq. (6) with \,
=0.01 (stars) with the asymptotic barometric law (solid line), Eq.
(12) with k=1/2, )\;,=0.5 (filled circles) with the corresponding
asymptotic law (dashed-dotted line), and with xk=2, )\§=0.0001
(open squares) with the asymptotic law (dashed line). For all cases
the box size was 80X 80X 250 and the number of chains was A
=1200.

V. VARIABLE CHAIN STIFFNESS

Allowing for nonzero parameters f and g, in Eq. (15)
already has interesting effects even in the ideal gas limit
where single-chain properties dominate the behavior, and
this we will discuss first.

Figure 6 shows the chemical potential per chain, w(¢), as
a function of the volume fraction ¢ both for fully flexible
and for semiflexible chains. The logarithmic scale of the ab-
scissa is used to demonstrate the approach to the ideal gas
law,

wia(d) =1n p+ C(f, ), (19)

where C(f,g,) is a constant that depends on both f and &,,.
The data shown in Fig. 6 were obtained from simulations in
the uVT ensemble, of course.

Figure 7 shows the dependence of both the bending
energy, Upending [EQ. (15)], and of C(f,0) on the stiffness
parameter f. One sees that the bending energy per chain is
essentially decreasing linearly with f for f=35, and then also
the bending energy per monomer clearly exceeds the thermal
energy, and hence the chains get strongly stretched (Fig. 8).
The linear variation of the bending energy with f in Fig. 7(a)
indicates that the bending energy is already fully “saturated,”
i.e., an energetic minimum is reached. An asymptotic for-
mula for the bending energy per chain for the case of fully
stretched chain gives Upenging/ N==1.03(N=-2)f, i.e., for f
=20, N=20 the bending energy per chain is equal to 370.8
[cf. Fig. 7(a)].

The variation of the constant C(f, &,) with f does not have
an immediately obvious interpretation, however. In order to
interpret this behavior analytically, we have estimated
C(f,&p) applying approximate single-chain partition func-
tions in terms of the independent trimer, quadrumer, and pen-
tamer approximations [44,45]. One can see [Fig. 7(b)] that
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FIG. 6. Chemical potential per chain vs volume fraction ¢, for
the case of fully flexible chains (a), where both f=0 and &(,=0, and
for semiflexible ones (b), with f=2.68, gy=4. Note the logarithmic
scale of the abscissa. The straight solid line indicates the fit to Eq.
(19), with C(0,0)=-82.5 and C(2.68,4)=38.0, respectively.

these approximations follow the same trend as our fit to the
numerical data, but clearly the convergence of these approxi-
mations to the numerical result from the simulation is rather
slow. Obviously, the constant C(f,0) reflects a delicate inter-
play between excluded volume and chain stiffness contribu-
tions to the single-chain entropy that this constant measures.

Knowing w;q(¢) we obtain pe,(d)=u— wiq( ), which is
needed for the thermodynamic integration to obtain the pres-
sure [Egs. (1)—(4)]. The result is presented in Fig. 9. One
sees that the variation of chain stiffness at not too large vol-
ume fractions has surprisingly little effect on the equation of
state, despite the strong change in chain extensions (Fig. 8)
and structure, and the decrease in the entropy of the chains
(Fig. 7). We note that the osmotic pressure for semiflexible
chains gets slightly enhanced, in comparison to the fully
flexible ones, as soon as one reaches a volume fraction of
about ¢=0.01, where the first deviations from the ideal gas
law 7= ¢/8Na’= ¢/ 160 occur [Fig. 9(b)]. For large ¢, how-
ever, only the data for not so large f lie above the curve for
f=0, while, e.g., the data for f=20 lie below those for f=0 if
¢>0.12. This implies that at large enough ¢ the variation of
7 with f is nonmonotonic: 7 increases first, and then de-
creases again. Presumably this decrease reflects the onset of
a nematic short range order—small clusters of stretched
chains oriented more or less in parallel take less free volume
than randomly oriented ones, and hence lead to a decrease of
osmotic pressure.

026702-7



IVANOV et al.

100

-100 |

bending

-200 |

-300 |

-400

-100
-150 |
-200

-250

C(f,0)

-300 |

-350 | b4

-400

b)

FIG. 7. Bending energy per chain (a) and C(f,0) (b) plotted vs
the stiffness parameter f. The thin solid line in (a) indicates the
linear fit. In part (b) C(f,0) is plotted with stars (*) and a solid line,
while symbols indicate approximations where C(f,0) is found from
a decomposition of the chain partition function in terms of indepen-
dent trimers (open squares), tetramers (open circles), and pentamers
(filled circles).

Of course, this interpretation of the pressure maximum as
a function of f is highly speculative, and a clear answer must
await a careful analysis of the isotropic-nematic transition in
this model. Figure 10 shows that our techniques are suitable
to locate the transition. Here we first consider the case f
=2.68, gy=4, which was studied in our previous work on the
isotropic-nematic transition for this model [17,21]. Although
one expects this transition to be weakly of first order, and
hence the 7(¢) curve should have a small two-phase coex-
istence region, it turns out that for these values of parameters
the width of this two-phase coexistence region is unmeasur-
ably small, on the scale of Fig. 10 it cannot be resolved.
Thus, the isotropic and nematic branches i, (), Tpem(pt) in
Fig. 10 meet at the transition point in the diagram almost
tangentially, and in the 7(¢) curve the transition shows up
only as a slightly rounded kink. This behavior is compatible
with previous studies of this model [17,21]. This lack of a
two-phase region at the transition allows one to carry out the
integration in Egs. (1)—(4) from the isotropic phase over the
transition point into the region of the nematic phase (so no
reference state in the nematic phase is required).

Applying the RWTI method, a very pronounced layering
(extending over about 20 lattice units) was observed (Fig.
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FIG. 8. Mean squared end-to-end distance (a) and mean squared
gyration radius (b) plotted vs volume fraction ¢, for several choices
of the stiffness parameter f, f=0 (filled triangles), f=1.2 (open
squares), f=2.68 (filled squares), f=4 (open circles), f=8 (filled
circles), f=20 (open triangles), and £,=0.

11) for the state point with the higher volume fraction
(¢=0.34) in Fig. 10. Close to the repulsive walls, orienta-
tional ordering (or even almost crystalline packing) was ob-
served. However, in the center of the system a homogeneous
state at bulk density was clearly reached (Fig. 11), and the
agreement of the pressure estimates obtained (Fig. 10) sug-
gests that the observed layering (Fig. 11) does not invalidate
the RWTI method here.

Let us now consider the case of stiffer macromolecules
=8, g9=0. We performed grand canonical simulations in the
cubic box L=90, H=90 (box 1) and elongated box L=380,
H=150 (box 2). Two starting conformations have been
used—the completely empty box and the maximally dense
packed box with chains placed along one coordinate axis
having bond lengths equal to 2. The difference between these
boxes with different geometries and sizes is that it is possible
to fill the second one (box 2) with a volume fraction equal to
1, while this is impossible for the first box (box 1). To char-
acterize the orientational ordering of the bonds we have es-
timated the standard 3 X 3 nematic order parameter tensor

N(N-1)
> 5(3e?e5—5a>, (20)

i=1

1

Qas= N= 1)

where e} is the ath component of the unit vector along the
bond connecting monomers i and i+ 1 (the largest eigenvalue
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FIG. 9. Equation of state 7(¢) plotted vs ¢, for several choices
of the stiffness parameter f and two choices for the bond length
energy parameter g, (a). Magnified view of the equation of state in
the low density regime (b); the ideal gas limit 7=¢/160 is indi-
cated by a thin solid line. The choices of the parameter f [and g in
part (a); part (b) refers to £y=0 only] are given in the figure. Curves
are obtained using the TI,VT method.

of this tensor is the nematic orientational order parameter S).
In order to distinguish between different types of nematic
structures (e.g., monodomain vs multidomain structures) ob-
served in the simulation [21] we have also calculated the
largest eigenvalue of this tensor for each chain separately,
and afterwards performed the averaging over all chains in the
system (the single-chain orientational order parameter ob-
tained in such a way is denoted S,i,)- The hysteresis for the
dependencies of the density (volume fraction) ¢, the total
orientational order parameter S, and of the single-chain ori-
entational order parameter S,;, Vs the chemical potential for
simulations in box 2 is shown in Fig. 12.

The method to locate the isotropic-nematic transition is
shown in Fig. 13. Again, the isotropic and nematic branches
Tiso(), Tpem(pt) in Fig. 13(a) meet in the transition region
(values of u between —170 and —160) almost tangentially.
Nevertheless, the intersection point of these two branches
can be determined with a very good accuracy. The inset in
Fig. 13(a) shows the difference 7., (1) — () in the hys-
teresis region. This curve crosses zero at the value
m=—166. The statistical error in this region was less than
0.5%, therefore we have indicated the 1% error bars for all
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FIG. 10. Osmotic pressure 7 plotted vs the chemical potential
(a) and vs the volume fraction ¢ (b), for the model with parameters

f=2.68 and g;=4. Curves are obtained using the TI,VT method

(filled triangles correspond to a densely packed starting conforma-
tion, while open squares correspond to a dilute isotropic one), the
two large open circles show results obtained from the RWTI
method. The inset shows an enlarged region in the vicinity of the
isotropic-nematic transition.

data points in the inset. Additionally, we have found the in-
tersection point of linear fits of both branches within and in
close vicinity of the hysteresis region (their slopes are quite
close to each other but still different). From these two pro-
cedures of data analysis we were able to determine the tran-
sition point as wu,=-166+0.5 and 7,=0.026+0.001. The
value of u, is indicated in Fig. 12, and that of 7, indicates
the transition in Fig. 13(b) where also the densities in coex-
isting isotropic and nematic phases [determined from Fig.
12(a)] are shown. Note, that the hysteresis in the equation of
state for this value of chain stiffness is much broader than
that in Fig. 10. Apart from the problem, that the finite size of
the box in the x and y directions may still be responsible for
some systematic errors (for L=80 the size exceeds \/@
only by about a factor of 2), an accurate location of the
transition and characterization of the discontinuities is
possible.

Now we turn to the test of the SE method for solutions of
semiflexible chains (Fig. 14). It is found [see Fig. 14(a)] that
for the case f=4, £y=0 the SE method is in very good agree-
ment with the TIuVT method, as in the case of flexible
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FIG. 11. Density (volume fraction) profile of a 60X 60X 180
system (only half of the symmetric profile is shown) for the param-
eters f=2.68 and gy=4 at ¢~0.34, as used for the calculation of
the pressure 7(¢) in the RWTI method. Different curves for differ-
ent values of the repulsion parameter N from A=0.02 to A=1.0 are
superimposed.

chains. Note however, that the regime of parameters studied
here does not yet encompass the nematic phase. Similar good
results are found for the case f=2.68, gy=4 discussed in Fig.
10 (to save space these data are not shown here).

However, for the case f=8.0, £5=0 some problems of the
SE method start to appear because of the formation of a
nematic phase formed on the hard wall. What happens in the
system is shown in Fig. 15(a) where the profile of the orien-
tational order parameter S(z) is plotted together with the den-
sity (volume fraction) profile ¢(z). The standard nematic or-
der parameter tensor, Eq. (20), was calculated for bond
vectors in each of the xy layers along the z axis separately
and averaged over many conformations. Afterwards its maxi-
mal eigenvalue was calculated giving the orientational order
parameter S in each layer. The points indicated by squares
and circles in Fig. 15(a) (and in the inset showing the tran-
sition regime in an enlarged scale) present the data for den-
sity (squares) and orientational order parameter (circles) in
the isotropic (filled symbols) and in the nematic (open sym-
bols) phases obtained from the grand canonical simulations
at u=-166 (see Fig. 12), which exactly corresponds to the
transition point. We used the values of the bulk densities to
locate the layer z where the same value of density occurs in
the system with the wall, and then we plotted the value of §
in the bulk system at the same layer z. In Fig. 15(b) we
present the two-dimensional xz map of the coarse-grained
order parameter profile for this system using red, green, and
blue colors to represent the average local orientation of
monomer units along the x, y, and z axes, respectively (the
details of the calculation method can be found in Ref. [22]).
From both these figures [Figs. 15(a) and 15(b)] one can see
that the wall stabilizes rather thick domains of the nemati-
cally ordered phase.

One can observe a kink in the z dependence of the density
profile exactly between the two coexisting bulk densities of
the isotropic-nematic transition. The order parameter, how-
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FIG. 12. Hysteresis for the density vs u dependence (a), for the
dependence of the single-chain orientational order parameter Sy,
vs u (b), and the total orientational order parameter S vs u (c).
Filled triangles correspond to a densely packed starting conforma-
tion, while open squares correspond to a dilute isotropic starting
conformation. In part (c) for the case of a dilute isotropic starting
conformation only data points for u below the jump to a nematic
state are presented. Vertical lines show the estimated value of the
chemical potential at the transition point, u=—166+0.5 (determined
in Fig. 13).

ever, starts to rise significantly before the limiting isotropic
density in the bulk is reached and has a value around 0.5 at
this density, whereas the corresponding bulk value is close to
zero. The order parameter profile appears strongly rounded
and slightly shifted with respect to the bulk simulations.
These effects prevent an exact localization of the values of
density and order parameter at the isotropic-nematic transi-
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FIG. 13. (a) The dependence of the pressure vs chemical poten-
tial for /=8, gy=0, obtained by the TIuVT method; the inset shows
the difference 7ematic — Tisotropic 1N the region close to the isotropic-
nematic transition on enlarged scales. Filled triangles correspond to
a densely packed starting conformation, while open squares corre-
spond to a dilute isotropic one. (b) The equation of state for /=8,
£0=0 (solid and dotted lines). The hysteresis region as well as the
determined transition line are well visible. Two open squares indi-
cate densities in the coexisting phases.

tion by the SE method. The rounding of the transition is
unavoidable and mainly due to the presence of capillary
wave excitations of the interface [46], which would even
increase in magnitude upon an increase of the lateral dimen-
sion of the simulation box [47,48], in contrast to the grand
canonical bulk simulations where one can reduce finite size
effects by increasing the system size. The slight shift of the
transition in the order parameter profile as opposed to the
density profile is an indication of a precursor of a nematic
wetting layer at the hard wall.

It is interesting to compare the dependence of the orien-
tational order parameter S on the density ¢ (see Fig. 16)
obtained by means of SE and TIuVT methods, which can be
extracted from the data presented in Fig. 15(a) and Figs.
12(a) and 12(c), respectively. Again, the TIuVT data show a
hysteresis while the SE data exhibit a smooth transition. It
should be emphasized that both in the isotropic and nematic
phases outside the hysteresis region the curves for both
methods coincide with each other indicating that the SE
method reproduces the properties of nematic phase correctly
despite the vicinity of a hard wall.

PHYSICAL REVIEW E 76, 026702 (2007)

0.04 |
0.03 |
B
0.02 |
0.01 |
0
a)
0.6
05 | 0.6
0.5 | :
0.4
0.4 ;
< 03
03—

10 15 2
0zl 0 5 10 15 20 |
0.1}

0 " " " i
0 50 100 150 200 250
b) z

FIG. 14. (a) Equation of state m(¢) for an athermal solution of
semiflexible chains, with the parameters of the bending energy [Eq.
(15)] chosen as g,=0 and f=4 (a). Open circles are the results of
the TIuVT method, while the solid line is the result of the SE
method, choosing the potential Eq. (6) and \,=0.01. The box size
was equal to 80 X 80X 250, and the number of chains was equal to
N=1600. Part (b) shows the density profile for the SE method. The
inset shows an enlarged region in the vicinity of the wall where the
layering is well visible.

The inevitable presence of the interface leads to a smooth-
ing of the first order transition on the pressure vs density
dependence [Fig. 17(a)]. In this figure both the data for the
SE method are presented using different values of H and A,,
as well as the data for the TIuVT method, which we have
already discussed above. It is clear from the principle of the
SE method that it is impossible to observe any hysteresis on
the equation of state. Figure 17(a) shows that the ()
curves generated by the SE method start to deviate from
those generated by the TIuVT method near ¢=0.28, while
for ¢<<0.28 the agreement between both methods is excel-
lent as well as for ¢»>0.36 (these parts are not shown here).
All curves for the SE method obtained at different values of
H and \, almost coincide with each other (a variation of the
lateral box linear dimension L has no detectable effect on SE
results) except for one data set shown with small filled
squares (H=500, N'=1600, \,=0.005). In Fig. 17(b) the den-
sity profiles are presented and the reason for the deviation of
the one data set becomes apparent: this is the only curve
where the isotropic-nematic interface (which shows up as a
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FIG. 15. (Color online) (a) Profiles of the orientational order
parameter S(z) [pluses (+)], and of the volume fraction of monomer
units, ¢(z) [crosses (X)], for the 80X 80X 1000 system, for the
parameters f=8.0, go=0, N=20, N'=1600, A,=0.01. Squares indi-
cate the density values at coexistence, while the circles indicate the
values of the nematic order parameter at coexistence. These values
were extracted from the bulk grand canonical simulation (Fig. 12).
The inset shows an enlarged region with the isotropic-nematic in-
terface. (b) Two-dimensional xz map of the coarse-grained order
parameter profile for a system snapshot corresponding to (a); for
details of the calculation see the text and Ref. [22].

characteristic kink in the density profile) appears very close
to the hard wall (note that for f=8.0 the end-to-end distance
of a chain is R,~40 [Fig. 8] and the chains are already rather
stretched [Fig. 12(b)] so that layering effects influence the
isotropic-nematic coexistence in this case significantly). The
effect of the layering at the wall, which can be quite strong
[see Fig. 17(b)] on the equation of state in the isotropic re-
gime, decreases with increasing distance of the isotropic-
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FIG. 16. Dependence of the nematic orientational order param-
eter S on the density ¢: comparison of the TIuVT data (open and
filled triangles) with the SE data (solid line). The two large open
circles indicate the isotropic-nematic transition.
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FIG. 17. (a) Equation of state 7(¢) for the case f=8.0, 7=0,
N=20, L=80 using the SE method for several choices of N, H, and
A, as indicated in the legend: A\,=0.01, H=250, N=1600 (small
open squares); A,=0.005, H=500, AN'=1600 (small filled squares);
\,=0.005, H=1000, N=3200 (small open circles); \,=0.007, H
=500, N=1600 (small filled triangles). Additionally, large open
circles (and the solid line which is only a guide for the eye) show
the result of the TIuVT method for the box 90 X 90 X 90. Stars and
dashed lines (as a guide for the eye) are the results of the TIuVT
simulations in the box 80X80X150 [from Fig. 13(b)]. The
isotropic-nematic transition line is visible between two large open
squares indicating the coexisting densities. Regions of the density
profiles with a kink indicating the isotropic-nematic transition are
presented in (b) for A,=0.005 and different H and N as indicated in
the legend.

nematic interface from the wall, such that the curves for the
SE method in Fig. 17(a) already coincide within our error
bars. Note also, that the ordinate of the kink in the density
profiles in Fig. 17(b) is the same for all systems at different
parameters. For the bulk simulation (the TIwVT data) for
different systems presented in Fig. 17(a) we can conclude
that there exists an incommensurability effect, which influ-
ences the equation of state: large open circles show the well-
equilibrated data obtained in the cubic box L=90, H=90
(box 1, see also above), and the hysteresis region is different
from the one obtained for L=80, H=150 (box 2) shown with
stars and large open squares.

Finally, we mention here a scaling of the density profiles
shown in Fig. 18 (for details see the figure caption), which is
also in agreement with results obtained in Ref. [33]. The
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FIG. 18. Rescaled density profiles ¢p/(NA,) vs z\, for several
systems, as indicated in the legend. Note that curves with the same
value of N)\g prthically superimpose. The average value of the
gyration radius V’(Rz) is about 14.8 both in the dilute and concen-
trated regions.

curves superimpose for the systems where the combination
of parameters A\, has the same value. The curves for larger
values of N\, look broader and smoother in these scaled
variables ¢/(N\,) vs z\, and show the kink (isotropic-
nematic interface) further away from the hard wall.

It is interesting to compare our conclusion on the shift of
isotropic-nematic transition with the results of computer
simulation studies of hard-rod colloidal suspensions in con-
finements, i.e., solutions confined between hard walls and/or
exposed to an external gravitational potential. A shift of the
isotropic-nematic transition to lower densities as compared
to the bulk was found for a hard-rod fluid confined by two
walls [41]. At the same time, a surprisingly good agreement
between two osmotic equations of state for hard-rod fluids
obtained from computer simulation using the SE method and
from bulk simulations at many different densities has been
reported in Ref. [35], also for densities in the nematic phase.
The authors of Ref. [35] explained this agreement by a very
small interfacial width of the isotropic-nematic interface in
comparison with the gravitational lengths considered in their
work, a situation which is also realized in our simulations.
However, for the model in Ref. [35] the density difference
between the isotropic and the nematic phase is very small
and any possible deviations between the bulk equation of
state and the results from the SE method simulations in the
crossover density regime are not visible within the resolution
and statistical uncertainty of the simulations.

Theoretically the effect of gravity on the phase behavior
of hard rod solutions was studied in Ref. [49]. Comparing
density and order parameter profiles in Fig. 15(a) with those
calculated in Ref. [49] we can see a very good agreement:
the density profiles show a quite small jump at the transition
point and a smooth but significant decrease both in nematic
and isotropic phases, while the orientational order parameter
is almost constant within each of two phases and experiences
a quite large jump at the transition point.

VI. CONCLUSIONS

Monte Carlo computer simulations using the bond fluc-
tuation model have been performed for solutions of semi-
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flexible chains of the length N=20 monomer units. Three
methods for pressure calculation in lattice Monte Carlo
simulations have been investigated and compared: (1) the
thermodynamic integration method in the grand canonical
ensemble (TIuVT); (2) the repulsive wall method in the
grand canonical ensemble (RWTI); (3) the sedimentation
equilibrium method (SE) in the canonical ensemble in an
external sedimentation field. All three methods show quite
similar results for solutions of flexible chains as well as for
the region of the isotropic phase of semiflexible chains.
However, differences may occur at higher densities (or pres-
sures) where for semiflexible chains the transition to the
nematic phase takes place. Methodological problems of pres-
sure measurement in solutions in the vicinity of isotropic-
nematic transitions have been discussed.

The most crucial point is that the presence of a hard re-
pulsive wall and/or an external sedimentation field exerts a
significant influence on the isotropic-nematic transition, both
on the transition point (transition density) and also on the
structure of the ordered phase.

Thus we have found that the SE method is useful for
obtaining the equation of state of various polymeric systems
but its use becomes problematic in the vicinity of phase tran-
sitions. We have demonstrated this for the isotropic-nematic
transition in solutions of semiflexible chains. The SE method
works quite well sufficiently below and above the density of
the isotropic-nematic transition, but it fails to predict the
transition density correctly, at least for system sizes (which
were reasonably large) and sedimentation field strengths
(which were reasonably small) used in our simulations.

The source of the problems that we encountered is that for
a system undergoing a transition from the isotropic to the
nematic phase the SE method implies that for densities large
enough that the nematic phase can develop in the simulation
box, one necessarily must have a transition zone of densities
where the nematic-isotropic interface is present in the box.
This nematic-isotropic interface is not sharp but rather ex-
tended, and hence it is not clear from data such as Fig. 15 to
judge where the region of the “bulk” nematic phase stops
and where the region of the interface begins. In fact, for an
equilibrium interface in the absence of an external (gravita-
tional) field we would have a smooth interfacial profile be-
tween the coexisting phases as well. This profile can be
(at least approximately) considered as the convolution of an
intrinsic profile with capillary-wave-induced broadening,
which increases with the logarithm of the lateral system size,
proportional to In L. Note, that already in this case the prob-
lem of disentangling the interfacial profile from the capillary
wave broadening is notoriously difficult. However, in the
presence of a gravitational field the problem is even more
subtle: while strong gravitational fields will lead to a
“squeezing” of the intrinsic interface (similar to the squeez-
ing of interfaces by very strong confinement), and eliminate
the capillary wave broadening completely, weak gravita-
tional fields will leave the intrinsic profile more or less intact,
but eliminate the long wavelength part of the capillary wave
spectrum. As a consequence, one expects a crossover from a
broadening proportional to In L for not too large L to a finite
width independent of L but controlled by the strength of the
gravitational field. An explicit study of all these interfacial
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phenomena is beyond the scope of the present paper. The
problem gets even more complicated by the fact that also in
the “bulk” nematic phase the nematic order parameter is not
at all constant, but varies with the distance z from the wall,
since the order parameter near the transition depends
strongly on density, and thus a strong variation of order pa-
rameter is caused by the density variation as well. In view of
these problems, it is difficult from the SE method to estimate
accurately at which density the region of the isotropic phase
stops and at which (higher) density then the region of the
nematic phase begins. An estimation of the nematic order
parameter at the transition point is hardly possible.

A particularly subtle difficulty occurs if parameters such
as system size H in the long direction and strength of the
gravitational potential are chosen, such that there is not
enough space left for the nematic phase to develop, and the
isotropic-nematic interface occurs directly adjacent to the
wall [Fig. 17(b)]. Then data for the osmotic pressure in the
transition region are obtained that are systematically too
small, and suggest a transition from the isotropic to the nem-
atic phase at a density that is clearly too low. This example
shows that one must not rely on the SE method blindly when
a phase transition occurs, but one needs then to check that
the results are not changing when the strength of the gravi-
tational field and/or the size in the long direction are varied.

We restricted ourselves to the chain length N=20 mono-
mer units because in the bond-fluctuation model this chain
length is sufficiently long to display Gaussian behavior in its
chain statistics in the melt (i.e., it is a real flexible polymer,
not an oligomer) and it is not too long to allow for a suffi-
ciently efficient simulation. We should emphasize that the SE
method is valid for polymer chains of any length, provided
the length scale of variation of the external potential in
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which the sedimentation equilibrium is reached is much
larger than the radius of gyration of a polymer chain, e.g.,
flexible chains of the length up to 500 monomer units have
been studied in Ref. [33]. However, for the semiflexible
chains the effect of chain stiffening in the nematic state [21]
will necessarily require much larger simulation boxes in
comparison to the case of flexible chains of the same length.

While the TIu VT method near the isotropic-nematic tran-
sition is hampered by hysteresis, Fig. 12, the fact that the
transition in the (7, u) plane must show up as a simple in-
tersection point of the curves does allow an accurate location
of the transition [Fig. 13(a)], and to characterize the magni-
tudes of the jumps. In this way, the strictly horizontal part in
the 7 vs ¢ isotherm [Fig. 13(b)] can be constructed. Thus,
we feel that for the accurate characterization of first order
phase transitions the TIuVT method is preferable, whenever
applicable. With respect to the numerical data presented in
this paper, we add the caveat that there may be still some
systematic errors due to a too small value chosen for the
lateral size L. However, the same size was used for the simu-
lations by means of the SE method, and hence we think that
our discussion of the relative merits of these methods should
not be affected by this problem.

In future work, we plan to extend these studies to include
also attractive interaction between the monomer units, to in-
vestigate the competition between nematic ordering and
polymer-solvent phase separation, applying the methods
validated in the present paper.
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